Mond-Weir type second order multiobjective mixed symmetric duality with square root term under generalized univex function

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mond-Weir type second order multiobjective mixed symmetric duality with square root term under generalized univex function

In this paper, a new class of second order ( , )   -univex and second order ( , )   pseudo univex function are introduced with example. A pair Mond-Weir type second order mixed symmetric duality for multiobjective nondifferentiable programming is formulated and the duality results are established under the mild assumption of second order ( , )   univexity and second order pseudo univexity...

متن کامل

Second Order Duality in Multiobjective Fractional Programming with Square Root Term under Generalized Univex Function

Three approaches of second order mixed type duality are introduced for a nondifferentiable multiobjective fractional programming problem in which the numerator and denominator of objective function contain square root of positive semidefinite quadratic form. Also, the necessary and sufficient conditions of efficient solution for fractional programming are established and a parameterization tech...

متن کامل

Note on Mond-Weir type nondifferentiable second order symmetric duality

In this paper, we point out some inconsistencies in the earlier work of Ahmad and Husain (Appl. Math. Lett. 18, 721–728, 2005), and present the correct forms of their strong and converse duality theorems.

متن کامل

Mond-Weir type multiobjective second-order fractional symmetric duality with (φ, ρ)-invexity

In this paper, we start our discussion with a pair of multiobjective MondWeir type second-order symmetric dual fractional programming problem and derive weak, strong and strict duality theorems under second-order (φ, ρ)-invexity assumptions.

متن کامل

Alternative generalized Wolfe type and Mond-Weir type vector duality

Considering a general vector optimization problem, we attach to it two new vector duals by means of perturbation theory. These vector duals are constructed with the help of the recent Wolfe and Mond-Weir scalar duals for general optimization problems proposed by R.I. Boţ and S.-M. Grad, by exploiting an idea due to W. Breckner and I. Kolumbán. Constrained and unconstrained vector optimization p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: An International Journal of Optimization and Control: Theories & Applications (IJOCTA)

سال: 2013

ISSN: 2146-5703,2146-0957

DOI: 10.11121/ijocta.01.2014.00175